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Abstract

In this paper, we extend the constructal optimization method to cylindrical assemblies of pin ®ns. The assembly is
arranged as a tree with one stem and many radial branches. The optimization consists of maximizing the global
conductance subject to ®xed total volume and amount of ®n material. The length scale of the spacing between

adjacent elemental ®ns is selected based on earlier results regarding the forced convection of compact electronic
packages. The optimized features of the tree construct are the external shape (height/diameter) and the internal ratio
between the stem diameter and the diameter of the elemental ®ns. The paper shows how the geometric optimum
responds to changes in the remaining parameters of the design: the volume fraction occupied by ®n material, the

free stream velocity, and the Prandtl number. The optimized geometry is relatively robust. It is shown that
optimized trees with tapered ®ns have slightly larger global conductances, but nearly the same external and internal
aspect ratios. This last comparison also shows that the more e�cient trees look more natural. 7 2000 Elsevier

Science Ltd. All rights reserved.

1. Introduction

Complex networks of ®ns are an important class of

heat transfer devices in the cooling of electronics and
other applications [1±4]. The importance and complex-
ity of these devices promise to increase as miniaturiza-

tion continues, and as volumetric heat transfer rates
increase. The most common ®n network is the tree, in
which several ®ns are attached to a stem that makes
contact with the wall. This conductive±convective con-

nection between the wall and the cooling ¯uid is also
known as a ®n bush or ®n tower. Similar ®n assem-
blies are of interest in chemical engineering, entropy

generation minimization and fractal geometry [5±7].
The tree is the ¯ow structure that connects one

point (source, sink) with a volume (an in®nity of

points). More recently, this structure has become the

focus of constructal theory [8] Ð the thought that the

geometric form visible in natural ¯ow systems is gener-

ated by (i.e., it can be deduced from) a single principle

that holds the rank of law [9]: ``for a ®nite-size system

to persist in time, it must evolve in such a way that it

provides easier access to the imposed currents that

¯ow through it.''

The constructal optimization of paths for internal

currents was ®rst proposed in the context of urban

growth [10] and pure heat conduction [9]. In the latter,

the channels were inserts of high thermal conductivity

in a background medium (the interstitial material) that

had lower thermal conductivity. The volume generated

heat at every point, and was cooled from a single

point (the sink). The method was, since, extended to

¯uid ¯ow [11] by recognizing the heterogeneity associ-

ated with low-resistance ¯ow through tubes embedded

International Journal of Heat and Mass Transfer 43 (2000) 4285±4297

0017-9310/00/$ - see front matter 7 2000 Elsevier Science Ltd. All rights reserved.

PII: S0017-9310(00 )00049-1

www.elsevier.com/locate/ijhmt

* Corresponding author. Tel.: +1-919-660-5310; fax: +1-

919-660-8963.

E-mail address: abejan@duke.edu (A. Bejan).



through a di�usive material with higher resistance

(e.g., Darcy ¯ow).

The method was also extended to combined conduc-

tion and convection in the optimization of two-dimen-

sional trees of plate ®ns [12]. The objective of the

present paper is to continue on this path, and to con-

sider three-dimensional constructs of cylindrical pin

®ns (Fig. 1). Unlike in the ®n-tree studies mentioned in

the preceding paragraphs, the focus of the present

paper is on geometric optimization, not on analysis.

We rely on simplifying assumptions. We are interested

in a simple and robust method that leads not only to

Nomenclature

A area, m2

D diameter, m
h heat transfer coe�cient, W mÿ2 Kÿ1

H length, m
H1 diameter of ®rst construct, m
k thermal conductivity, W mÿ1 Kÿ1

L length, m
m0,1 ®n parameters, mÿ1, Eqs. (5) and (8)
n1 number of ®ns

N number of cylinders
Pr Prandtl number
q, _Q heat transfer rate, W
ReD0, L Reynolds numbers, �D0, L� U=n
Re Reynolds number, V 1=3U=n
S spacing, m
Tb base temperature, K

Tw wall temperature, K

T1 central stem temperature, K
T1 free stream temperature, K
U free stream velocity, m sÿ1

W length, m
V volume, m3

Vf ®n volume, m3

Greek symbols
n kinematic viscosity, m2 sÿ1

f ®n volume fraction

Subscripts
0 elemental volume

1 ®rst construct

Superscript

0 dimensionless notation, Eqs. (19)±(21)

Fig. 1. Cylindrical assembly of radial pin ®ns bathed by a free stream.
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the optimal architecture of the point-to-volume heat
path, but also the existence of the ®n tree as the visible

component of that path.

2. Model and analysis

Consider the assembly of pin ®ns shown in Fig. 1. A
large number (n1) of pin ®ns is mounted radially on a
common cylindrical stem of length L1 and diameter

D1. The free ends of the pin ®ns describe a cylindrical
surface of diameter H1. Each pin ®n has the diameter
D0 and length L0. This assembly is a ``®rst construct''
in the sense of Ref. [9], such that the space allocated

to a single pin ®n plays the role of elemental volume.
If S is the spacing between adjacent pin ®ns (Fig. 1,

detail), we may approximate each elemental volume as

a cylinder of diameter (D0 + S ):

V0 � p
4
�D0 � S� 2L0 �1�

This statement is approximate because, in general, two

adjacent pin ®ns are not parallel: they are closer at the
root than at the tip. The spacing S is an average (e�ec-
tive) length scale that accounts for the actual spacing

that increases in the radial direction, away from the D1

stem. The correct scale of S follows from the require-
ment that the sum of the elemental volumes (1) must

equal the annular volume that surrounds the D1 stem

p
4

ÿ
H 2

1 ÿD 2
1

�
L1 � n1V0 �2�

Another relation of geometric compatibility between

the elemental volumes and the ®rst-construct external
dimension H1 is

H1 � 2L0 �D1 �3�
The assembly transfers heat from a base-wall of tem-
perature Tb to a free stream of velocity U and tem-
perature T1 (Fig. 1). The base heat current (q1) is

divided into n1 elemental currents (q0), which are later
transferred by convection to the ¯uid. We assume that
the direct convective heat transfer between the D1 stem
and the ¯uid is negligible relative to the n1 conduction

heat currents that ¯ow into the elemental pin ®ns. We
also assume that the conduction along the D1 stem
and the D0 pins conforms to the unidirectional model

[1]: we monitored the validity of this assumption by
checking the Biot number inequality hD0=k� 1:
Let T1(x ) be the local temperature of the D1 stem,

i.e. the base temperature of the pin ®n(s) situated at
the distance x away from the base Tb. The heat current
drawn from the stem by each pin ®n is [13]

q0 � �T1 ÿ T1�
�
k
p
4
D 2

0 h0pD0

�1=2

tanh�m0L0 � �4�

where k is the thermal conductivity of the ®n material,
h0 is the heat transfer coe�cient between the pin ®n
and the external stream, and m0 is the ®n parameter

m0 �
�
4h0
kD0

�1=2

�5�

According to the simplest ®n conduction model, Eq.
(4) is based on the assumptions that (i) h0 does not
vary with position, and (ii) the heat transfer through
the free end of the pin ®n is negligible. Assumption (i)

does not mean that h0 is a ®xed parameter: we will see
in Eq. (32) that h0 varies with the spacing S, which can
be chosen optimally [14]. Assumption (ii) was made

only for the sake of brevity in the writing of Eq. (4), in
order to show explicitly what parameters in¯uence the
value of q0. For the numerical results developed in Sec-

tion 4, we used the complete q0 expression for a ®n
with non-negligible heat transfer through the tip; e.g.,
Eq. (41).
The ®nal step in the heat transfer analysis is the re-

lation between the overall conductance q1/(TbÿT1)
and the cooling e�ect provided by the elemental heat
currents of type q0. This step is simpli®ed considerably

by the observation that although q0 varies along the
D1 stream, each elemental conductance q0/(T1ÿT1) is
independent of the axial position x. The heat transfer

rate removed by pin ®ns from the D1 stem at x = con-
stant, per unit length of stem, is q 0 � �n1=L1�q0: Divi-
ding q ' by the perimeter of contact (pD1) and the tem-

perature di�erence between the stem and the external
¯uid (T1ÿT1), we obtain an x-independent parameter:

h1 � �n1=L1 �q0
pD1�T1 ÿ T1� �6�

Parameter h1 plays the same role as the convective

heat transfer coe�cient in the case where the D1 stem
is bare and exposed directly to the stream. We rely on
this analogy to invoke one more time the formula (4)

for the base heat transfer rate through a cylindrical ®n
with insulated tip, this time for the D1 stem:

q1 � �Tb ÿ T1�
�
k
p
4
D 2

1 h1pD1

�1=2

tanh�m1L1 � �7�

m1 �
�
4h1
kD1

�1=2

�8�

The objective is to determine the optimal architecture

of the assembly such that the overall conductance q1/
(TbÿT1) is maximal. This geometric optimization is
subjected to two constraints, namely, the total volume
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of the assembly

V1 � p
4
H 2

1L1 �constant� �9�

and the amount of ®n material,

Vf � p
4
D 2

1L1 � n1
p
4

D 2
0L0 �constant� �10�

An alternative to constraint (10) is the volume fraction
�f� occupied by the solid, which is a speci®ed design
parameter:

f � Vf=V �constant� �11�

In preparation for the numerical implementation of
this analytical formulation, it is useful to nondimen-
sionalize the equations by using V1

1/3 as length scale.

The nondimensional counterparts to Eqs. (1)±(9) and
(11) are, in order�

~H
2

1 ÿ ~D
2

1

�
~L1 � n1

ÿ
~D0 � ~S

� 2 ~L0 �12�

~H1 � 2 ~L0 � ~D1 �13�

~q0 �
p
2

~D
3=2

0
~h
1=2

0 tanh

�
2 ~L0

~h
1=2

0
~D
ÿ1=2
0

�
�14�

~h1 � n1 ~q0

p ~D1
~L1

�15�

~q1 �
p
2

~D
3=2

1
~h
1=2

1 tanh

�
2 ~L1

~h
1=2

1
~D
ÿ1=2
1

�
�16�

~H
2

1
~L1 � 4=p �17�

f �
~D
2

1
~L1 � n1 ~D

2

0
~L0

~H
2

1
~L1

�18�

with the following notationÿ
~D0, ~L0, ~S, ~D1, ~L1, ~H1

�
� �D0, L0, S, D1, L1, H1 �

V1=3
1

�19�

~q0 �
q0

�T1 ÿ T1�kV1=3
1

~q1 �
q1

�Tb ÿ T1�kV1=3
1

�20�

~h0 � h0V
1=3
1

k
~h1 � h1V

1=3
1

k
�21�

The system of seven equations (12)±(18) contains 11
unknowns: DÄ 0, LÄ0, SÄ, DÄ1, LÄ1, HÄ 1, n1, hÄ0, hÄ1, qÄ0, and qÄ1.

One way to structure the optimization is to assume
that the heat transfer coe�cient hÄ0 is also a speci®ed

``external'' parameter, that accounts for the velocity
and thermophysical properties of the ¯uid stream. This
approach is analogous to what is usually done in ana-

lyses of single ®ns, e.g., Eqs. (4) and (7). In this case
the number of unknowns would be 10, and the geome-
try of the assembly would have 3 degrees of freedom.

We did not follow this route, for the reasons given in
the next section.

3. Optimal internal spacings

The main objection to assuming that hÄ0 can be speci-
®ed a priori is that, inside the assembly, the heat trans-
fer coe�cient on each pin ®n is in¯uenced by the

neighboring ®ns. Recent work [15,16] on the single-
phase cooling of arrays of heat-generating components
(e.g., electronics) and compact heat exchangers has
shown that the overall thermal conductance between a

stream of coolant and the volume that contains the
array can be maximized by choosing the proper
spacing between components, or the proper number of

components to be installed in the given volume. An
optimal spacing exists because in one extreme (small
spacings) the coolant cannot ¯ow easily through the

array,while in the other extreme (large spacings) the
contact area for heat transfer to the coolant is not suf-
®cient.

By recognizing this trade o� at this early stage, we
can optimize the SÄ value and the corresponding hÄ0
value, accounting in this way for the fact that in any
real assembly the heat transfer coe�cient depends on

internal dimensions and relative positions. The SÄ and
hÄ0 information provided by this preliminary step
reduces the number of remaining degrees of freedom

to two, cf. the last paragraph of the preceding section.
The literature on optimal internal spacings [15]

reports many concrete results, which depend on the

assumed shape and orientation of each heat-generating
component in the array. The optimal-spacing formulas
appear di�erent at ®rst, but they convey the same

message. For example, when the array consists of
many parallel cylinders of diameter D0 installed in a
®xed volume with the dimension H in the direction of
the stream of coolant, the optimal cylinder-to-cylinder

spacing is given by [17]

Sopt

D0
� 1:7 Prÿ0:24

�
H

D0

�0:52

Reÿ0:26D0
�22�

This correlation is backed by a large volume of heat

transfer information collected from many decades of
heat exchanger development and by recent numerical
and experimental results. Eq. (22) was shown to be
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valid in the range 140 < ReD0
< 14,000, where ReD0

�
UD0=n:
A more recent study [14] showed numerically and

experimentally that an optimal spacing also emerges
when the ¯ow is three-dimensional, as in an array of

pin ®ns planted on a square base of side L, with the
¯ow (U ) impinging perpendicularly on that base. The
optimal spacing is correlated within 16% by the ex-

pression

Sopt

L
� 0:81Prÿ0:25Reÿ0:32L �23�

which was tested in the range 0.06<D0/L<0.14, 0.28
< W/L < 0.56, 0.72 < Pr < 7, 10 < ReD0

< 700 and

90 <ReL < 6,000. The pin ®n cross-section was a
square with the side D0. The pin length was W.
The interesting and very useful aspect of the appar-

ently di�erent correlations (22) and (23) is that they
contain nearly the same information. Eq. (23) can be
rewritten as

Sopt

D0
� 0:81 Prÿ0:25

�
L

D0

�0:68

Reÿ0:32L �24�

which comes surprisingly close to Eq. (22), qualitat-

ively and quantitatively, in spite of the three-dimen-

sional ¯ow pattern and square shape of each pin. The

dimension L of the square base of the array with

impinging ¯ow, Eq. (24), plays the role of the swept

length H of the array with parallel cylinders in cross-

¯ow, Eq. (22).

The geometry of present assembly (Fig. 1) has fea-

tures in common with the two con®gurations covered

by Eqs. (22) and (24). The ¯ow through the D0 ®ns is

two-dimensional: it is similar to cross-¯ow near the

®ns that are close to the perpendicular to the approach

velocity U, and similar to impinging ¯ow near the ®ns

that point toward the approaching stream. In choosing

between Eqs. (22) and (24), we retain Eq. (22) because

it is supported by a much larger body of heat exchan-

ger data, and because its domain of tested validity is

considerably wider. With reference to the dimensions

and orientation of the present cylindrical assembly

(Fig. 1), we use H1 in place of H in Eq. (22), and non-

dimensionalize all the lengths in accordance with Eq.

(19):

Fig. 2. The maximization of the global thermal conductance with respect to the internal and external aspect ratios of the assembly.
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~S � 1:7Prÿ0:24Reÿ0:26 ~H
0:52

1
~D
ÿ0:22
0 �25�

The Reynolds number Re is now a speci®ed parameter,
because it is based on V1

1/3 as length scale,

Re � UV1=3
1 =n �constant� �26�

The relation between Re and ReD0
is ReD0

� ~D0Re:
The speci®ed Re value must be such that the validity
domain listed under Eq. (22) is respected,ÿ
140= ~D0

�
< Re <

ÿ
14,000= ~D0

�
�27�

Next, we turn our attention to the heat transfer coe�-

cient hÄ0 that corresponds to the optimal spacing and
¯ow conditions mentioned in Eq. (25). The minimized
global resistance between the array of cylinders in

cross-¯ow has been correlated with the formula [17]

Tw ÿ T1
_Q

� 4:5

Re0:9D0
Pr0:64

D0

kLW
�28�

The cylinder temperature is Tw. The array occupies the

®xed volume HLW, where H is the dimension aligned
with the stream (U ), W is the length of each D0 cylin-
der, and L is the second dimension perpendicular to

the stream (i.e., the frontal cross-section of the array is

LW ). We may rewrite Eq. (28) in terms of the array-
averaged heat transfer coe�cient h0, which is de®ned
by

h0 �
_Q

A�Tw ÿ T1� �29�

The total area for heat transfer is

A � NpD0W �30�

where N is the number of cylinders present in the
volume HLW. When the cylinder centers form equilat-
eral triangles, as in the arrays for which the correlation
(28) was developed, that number is

N � HL

�S�D0 � 2cos 308
�31�

Combining Eqs. (28)±(31), and using the dimensionless
notation (19) and (21) with HÄ = HÄ 1, we obtain

~h0 � 0:0613Pr0:64 Re0:9
ÿ

~S� ~D0

� 2
~H1

~D
1:1

0

�32�

Fig. 3. The maximized global thermal conductance, and the e�ect of changing f, Re and Pr.
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In summary, the heat transfer performance of the
cylindrical assembly is described by a system of nine
equations [namely, Eqs. (12)±(18), (25) and (32)], that
contain the 11 unknowns listed under Eq. (21). This

means that the constrained geometry of the assembly
has two degrees of freedom. The earlier work on tree
networks for pure conduction showed that the overall

conductance of the assembly can be maximized with
respect to the external shape of the assembly (H1/L1 in
Fig. 1) and the ratio of internal channel thicknesses

(D1/D0 in Fig. 1). The same behavior was observed in
the present study. In the numerical optimization of the
assembly geometry we minimized qÄ1 with respect to

H1/L1 and D1/D0 subject to ®xed f and Re.

4. Numerical optimization

Let x and y represent the two independent geometric
variables, x = H1/L1 and y = D1/D0. The governing
equations can be rearranged so that we may calculate
the remaining variables as functions of x, y, f and Re:

~H1 � �4x=p�1=3 ~L1 � ~H1=x �33, 34�

~D
3:22

1 ÿ 1:18�fÿ 1�Pr0:24 Re0:26
p ~L1y1:22 ~H

0:52

1

~D
2:44

1

� 0:85y1:22 ~H
0:52

1

Pr0:24Re0:26
~D
2

1 ÿ
4f

p ~L1

~D
1:22

1

ÿ 3:4f y1:22 ~H
0:52

1

p ~L1 Pr0:24Re0:26

� 0 �35�

~D0 � ~D1=y ~L0 � 1

2

ÿ
~H1 ÿ ~D1

�
�36, 37�

n1 �
 

8f

p ~D
2

1

ÿ 2 ~L1

!
y 2

~H1 ÿ ~D1

�38�

~S � 1:7 ~H
0:52

1 y0:22

Pr0:24Re0:26 ~D
0:22

1

�39�

Fig. 4. The optimized external aspect ratio of the cylindrical assembly.
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Fig. 6. The average spacing between elemental ®ns, and the number of elemental ®ns that corresponds to the optimized geometry

of Figs. 3±5.

Fig. 5. The optimized ratio of ®n thicknesses.
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~h0 � 0:0613Pr0:64Re0:9
ÿ

~S� ~D0

� 2
~H1

~D
1:1

0

�40�

~q0 �
p
2

~D
3=2

0
~h
1=2

0

264 ÿ
~h0 ~D0=4

�1=2� tanh

�
2 ~h

1=2

0
~L0= ~D

1=2

0

�
1�

ÿ
~h0 ~D0=4

�1=2
tanh

�
2 ~h

1=2

0
~L0= ~D

1=2

0

�
375
�41�

~h1 � n1 ~q0=
ÿ
p ~D1

~L1

�
�42�

~q1 �
p
2

~D
3=2

1
~h
1=2

1 tanh

�
2 ~L1

~h
1=2

1 = ~D
1=2

1

�
�43�

The nonlinear Eq. (35) was combined with Eq. (36)

and solved for DÄ1 and DÄ 0. The numerical procedure
was based on the Newton±Raphson method with By-
section Technique. The variables were determined in
the sequence represented by Eqs. (33)±(43).

In the ®rst phase of the optimization we varied y (=
D1/D0) and maximized the global thermal conductance
qÄ1. This phase is illustrated in the upper frame of Fig. 2

for the case f � 0:1, Re = 104 and Pr = 0.7. The
result is recorded as qÄ1, m, in the lower frame, where

the subscript ``m'' indicates that qÄ1 has been maxi-
mized once. We repeated this procedure for many
values of x(= H1/L1) until we achieved the second

maximization of the global conductance. The lower
frame of Fig. 2 shows a second, well de®ned maximum
with respect to the external aspect ratio of the cylindri-

cal assembly.

5. Results

The double maximization of ~q1 was repeated for

many combinations of f and Re, which covered the
domain 0:01RfR0:2 and 104 < Re < 106: The results
are condensed in Figs. 3±6. The twice-maximized con-

ductance qÄ1, mm (Fig. 3) increases as the solid volume
fraction f and the external Reynolds number Re
increase. These trends are expected: more ®n material

and a faster ¯ow enhance the transfer of heat in a con-
strained volume. Each curve exhibits a change in dark-
ness at a point that corresponds to the upper limit of
the Re range indicated in Eq. (27). The solid black

Fig. 7. The maximized global thermal conductance when the external shape is set at H1/L1=1.
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portion of the curve are for Re values in agreement

with Eq. (27), i.e., in the range where SÄ correlation

(22) and (25) has been tested.

The next ®gures document the optimized architec-

ture of the assembly, for designs where the global con-

ductance has been maximized twice, in accordance

with Figs. 1±3. The optimized external aspect ratio

(H1/L1)opt is shown in Fig. 4. This ratio decreases as f
increases, and is relatively insensitive to the external

¯ow (Re ). The numerical values of H1/L1 are consider-

ably greater than 1, which makes them somewhat

incompatible with the model envisaged in Fig. 1. To

this observation we return in Section 6. The optimized

external dimensions of the assembly can be calculated

by combining (H1/L1)opt with the volume constraint.

For example, the diameter is given by

~H1 �
 
4

p

~H1

~L1

!1=3

�44�

The ratio of ®n thicknesses (D1/D0)opt is relatively
insensitive to the solid volume fraction and the Prandtl
number (Fig. 5). The e�ect of Re continues to be

weak. The values of (D1/D0)opt are of order 10, and,
combined with the values of (H1/L1)opt seen earlier,
they describe a design with long and thin elemental

®ns attached to a short and thick stem. The individual
thicknesses (D0, D1) can be calculated from the f con-
straint (10) and (11) in combination with the (D1/

Fig. 8. The optimized ratio of ®n thicknesses and the corresponding number of elemental ®ns when the external shape is set at H1/

L1=1.
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D0)opt result of Fig. 5, and the external dimensions

(L1, L0) derived (cf. Eqs. (44) and (3)).

Fig. 6 is a summary of other features that accom-
pany the geometry optimized in Figs. 3±5. The top

frame shows the average spacing between the elemental

®ns, as a fraction of the diameter of the assembly. The
ratio S/H1 is smaller than 1/10, and relatively insensi-

tive to f and Re. The spacings are smaller when there
is more material, and when the ¯uid ¯ows faster. The

latter is a common feature of all the optimized

spacings reported in the electronics cooling literature
[15].

The lower frame of Fig. 6 shows the correspond-

ing number of elemental ®ns: n1 is of order 10, and
increases as Re increases. The earlier conclusions

(H1/L1 1 10, S/H1 1 1/10), suggest that this relatively

small number of elemental ®ns can be ®tted in very
few sub-groups (discs) of the type illustrated on the

right side of Fig. 1. In other words, instead of the

``cylindrical brush'' architecture suggested by Fig. 1,
the optimized assembly resembles more closely the

spokes of a few wheels or umbrellas, all mounted on
the same short stem. It is not a coincidence, then, that

in an ongoing study of ®n assemblies with very few el-

ements (two, four, six) [18], the optimized designs
tended toward the umbrella with short stem architec-

ture.

The number of elemental ®ns �n1� was monitored
during each double optimization run, in order to limit

the calculations only to assemblies that are realistic, i.e.
structures in which the elemental ®ns can be ®tted with-
out interference. The maximum number of ®ns that ®t

in a wheel-shaped subgroup is pD1=D0 in this limit the
bases of the elemental ®ns just touch. The number of
sub-groups that can be installed on the L1 stem is L1/(S

+ D0). In conclusion, the maximum number of el-
emental ®ns is n1, max � p�D1=D0�L1=�S�D0�, which
according to the optimized results of Figs. 4±6 is a

number of order 30: this is larger than the n1 values
plotted in the lower half of Fig. 6, indicating that the
optimized elements can be ®tted in an assembly. In ad-
dition, the n1, max criterion allowed us to simplify the

numerical search for the two maxima (Fig. 2) by
searching only in the n1 < n1, max domain.

6. Fixed external aspect ratio

Brush-like constructs can be optimized by ®xing
the external shape of the volume. In this case the
optimization has only one degree of freedom: the

ratio of diameters. In Figs. 7 and 8 we show the
results obtained for the ®xed H1/L1. The behavior is

Fig. 9. The increase in global conductance caused by the tapering of the ®n pro®le.
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similar to what we found in Figs. 3, 5 and 6, however,
some di�erences are worth noting.
The maximized conductance (Fig. 7) is lower than

in Fig. 3. This comparison shows the relative ben-

e®t associated with optimizing the external aspect
ratio (Fig. 3), or the penalty associated with using
an aspect ratio that is easier to construct (Fig. 7).

The optimized ratio of diameters (Fig. 8, top) is
smaller than in Fig. 5, in other words, the distribution
of thicknesses is relatively more uniform. The lower

part of Fig. 8 shows that the number of elemental ®ns
is of order 100, which is considerably larger than in
Fig. 6. Taken together, the results of Figs. 7 and 8

describe an assembly that looks more like a cylindrical
brush.

7. Conclusions

In this study we showed that the global maximiza-
tion of thermal conductance subject to volume and ®n
material constraints leads to a tree structure in which

every geometric detail is derived from principle. In the
cylindrical geometry, the parameters derived from op-
timization are the external aspect ratio of the volume,

and the internal ratio between the ®n diameters
(Fig. 2). The structure is a `®rst-construct' with many

radial branches distributed on a central stem. We did

not continue the method toward constructs of higher
order, because the relatively ¯at cylindrical trees opti-

mized at the ®rst level cannot be grouped smoothly on

a new stem, into larger cylindrical volumes.

An important conclusion is the robustness of the

optimized geometric features. These features are rela-
tively insensitive to changes in the external parameters

imposed on the design. For example, the amount of ®n

material has almost no e�ect on the optimized ratio of
®n diameters (Figs. 5 and 8). The Prandtl number has

a weak e�ect on geometry. More noticeable is the

e�ect of the free stream velocity (Re ): the design shifts
toward ¯atter shapes (larger H1/L1) and larger steps in

®n diameter as the velocity increases.

The results developed in this paper are orientative in

nature, as they are based on several modeling approxi-

mations. In addition to the unidirectional conduction
model, we adopted results from the geometric optimiz-

ation of forced convection arrangements [15] in order

to select the length scale of the spacing between el-
emental ®ns. The correlations for optimal spacings

(e.g., Eq. (22)) require further development and testing,

Fig. 10. The relative changes in the external and internal ratios, when the design is changed from constant diameters (Fig. 1) to

tapered cylinders.
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so that their range can be increased. This study shows
that a new geometry on which the optimal spacing

ideas of Refs. [14±17] can be investigated is the geo-
metry of Fig. 1. One way to start would be to test sev-
eral designs with di�erent spacings (numbers of ®ns),

using devices with nearly isothermal solid parts.
Even the model employed in this paper can be

improved, for example, by abandoning some of the

simplifying assumptions made at the start. One
assumption is the cylindrical ®n of constant diam-
eter. We repeated the study for the case where the

elemental cylinder (D0) is tapered, while maintaining
the amount of ®n material ®xed. This is a classical ®n
improvement technique [19]. The tapered shape is rep-
resented by (Fig. 9 inset) the diameter function

D�x� � Db�x=L0� 2, where x is measured away from the
tip, and Db is the ®n diameter at the base. The average
diameter is D0 = 0.45 Db; this diameter corresponds

to the constant-D0 used in the preceding parts of the
paper, that is, when the elemental volume V0 is the
same in both designs. In the tapered-D0 case the el-

emental volume is V0 � �p=20�D 2
bL0:

The e�ect of this design change is documented in
Fig. 9, where the new global conductance is com-

pared with the twice maximized conductance of the
constant-diameter design (Fig. 3). The tapering of
the ®ns increases the conductance by a factor of
approximately 1.7.

The corresponding geometric features of the tree
with tapered elements are documented in Fig. 10,
again, with reference to the constant-diameter design.

We see that the optimized geometry is nearly the same
as in the simpler design with constant diameters. This
reinforces the conclusion that the optimized geometry

is robust, and that when more degrees of freedom are
relaxed (e.g., cylinder diameter) the optimized tree
looks more natural.
The designs described in this paper are examples of

the more general method of deducing optimal geo-
metric form from a global optimization principle. The
thought that the same principle can be used to explain

and predict the geometric form (e.g., tree networks) of
natural ¯ow systems is constructal theory [8±12]. The
applications of this methodology in the optimization

of engineering and natural systems are the subject of a
new book [20].
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